Ein Gitter (engl. lattice) in der Mathematik ist eine diskrete Untergruppe des euklidischen Raums. Gitter finden innermathematisch Verwendung u. a. in der Gruppentheorie, der Zahlentheorie[1], der Geometrie und bei Approximationsfragestellungen. Außermathematisch werden Gitter in der Chemie und Physik z. B. in der Kristallographie oder im Zusammenhang mit Ionengittern studiert.
Es seien linear unabhängige Vektoren des euklidischen Vektorraums . Dann nennt man
ein Gitter mit Basis vom Rang . Die aus den Vektoren gebildete Matrix heißt Basismatrix von . Die Basis ist durch das Gitter nicht festgelegt. Jede Basis von hat jedoch denselben Rang . Als Untergruppe der additiven Gruppe von ist eine freie abelsche Gruppe vom Rang .