Krümmung


Krümmung ist ein Begriff aus der Mathematik, der in seiner einfachsten Bedeutung die lokale Abweichung einer Kurve von einer Geraden bezeichnet. Der gleiche Begriff steht auch für das Krümmungsmaß, welches für jeden Punkt der Kurve quantitativ angibt, wie stark diese lokale Abweichung ist.

Aufbauend auf dem Krümmungsbegriff für Kurven lässt sich die Krümmung einer Fläche im dreidimensionalen Raum beschreiben, indem man die Krümmung von Kurven in dieser Fläche untersucht. Ein gewisser Teil der Krümmungsinformation einer Fläche, die gaußsche Krümmung, hängt nur von der inneren Geometrie der Fläche ab, d. h. von der ersten Fundamentalform (bzw. dem metrischen Tensor), die festlegt, wie die Bogenlänge von Kurven berechnet wird.

Dieser intrinsische Krümmungsbegriff lässt sich verallgemeinern auf Mannigfaltigkeiten beliebiger Dimension mit einem metrischen Tensor. Auf solchen Mannigfaltigkeiten ist der Paralleltransport längs Kurven erklärt und die Krümmungsgrößen geben an, wie groß die Richtungsänderung von Vektoren beim Paralleltransport längs geschlossener Kurven nach einem Umlauf ist. Eine Anwendung ist die Allgemeine Relativitätstheorie, welche Gravitation als eine Krümmung der Raumzeit beschreibt. Noch allgemeiner lässt sich dieser Begriff auf Hauptfaserbündel mit Zusammenhang übertragen. Diese finden Anwendung in der Eichtheorie, in welcher die Krümmungsgrößen die Stärke der fundamentalen Wechselwirkungen (z. B. des elektromagnetischen Feldes) beschreiben.


Krümmung am Kreis:
Kurve und ihr Krümmungskreis im Kurvenpunkt P
Lissajous-Kurve nebeneinander Animated.gif
Lemniskate nebeneinander Animated.gif
Animationen der Krümmung und des „Beschleunigungsvektors“