Natürliche Einheiten


Als Natürliche Einheiten in der Physik werden Systeme von Maßeinheiten bezeichnet, die durch die Werte von Naturkonstanten gegeben sind. Durch Verwendung solcher Einheiten vereinfachen sich oft physikalische Formeln. Betrachtet man die betreffenden Naturkonstanten außerdem als „dimensionslos“, also als reine Zahlen, vereinfacht dies die Formeln weiter. Wenn beispielsweise die Lichtgeschwindigkeit c gleich der Zahl 1 gesetzt wird, vereinfacht sich die bekannte Masse-Energie-Äquivalenz E = mc2 zu E = m, außerdem haben dann Energie, Impuls und Masse dieselbe Dimension.

Hiervon zu unterscheiden ist die Definition von Maßeinheiten mit Hilfe von Naturkonstanten. Im Internationalen Einheitensystem SI werden seit 1983 die Lichtgeschwindigkeit und seit der Revision von 2019 weitere fundamentale Naturkonstanten zur Definition von Einheiten verwendet. Diese Naturkonstanten behalten dabei ihre bisherige Dimension und werden nicht zu natürlichen Einheiten.

Natürliche Einheiten sollen sich zur besonders einfachen Beschreibung von Naturvorgängen eignen. So ist z. B. die Vakuumlichtgeschwindigkeit die Obergrenze für die Geschwindigkeit, mit der sich physikalische Wirkungen ausbreiten können, und ist der Umrechnungsfaktor zwischen Masse und Ruheenergie eines Teilchens. Die Elementarladung (abgesehen von einem Faktor ⅓ für die Quarks) und das Reduzierte Plancksche Wirkungsquantum (abgesehen von einem Faktor ½ für den Spin) – sind die kleinsten möglichen von Null verschiedenen Werte für elektrische Ladung bzw. Drehimpuls.

Da mehr Naturkonstanten zur Verfügung stehen, als das übliche Einheitensystem Dimensionen hat, können verschiedene natürliche Einheitensysteme gebildet werden. Welche dieser Grundlagen gewählt werden, hängt vom jeweiligen Teilgebiet der Physik ab.

Die betreffenden Naturkonstanten haben, wenn sie in den entsprechenden natürlichen Einheiten angegeben werden, sämtlich den Zahlenwert 1. Daher treten die Konstanten gar nicht in Erscheinung, wenn in konkreten Berechnungen Zahlenwertgleichungen benutzt werden.