Das Gebiet der Optimierung in der angewandten Mathematik beschäftigt sich damit, optimale Parameter eines – meist komplexen – Systems zu finden. „Optimal“ bedeutet, dass eine Zielfunktion minimiert oder maximiert wird. Optimierungsprobleme stellen sich in der Wirtschaftsmathematik, Statistik, Operations Research und generell in allen wissenschaftlichen Disziplinen, in denen mit unbekannten Parametern gearbeitet wird, wie beispielsweise in der Physik, der Chemie sowie der Meteorologie. Häufig ist eine analytische Lösung von Optimierungsproblemen nicht möglich und es müssen numerische Verfahren eingesetzt werden.
Das einfachste Optimierungsproblem ist das Auffinden eines Minimums oder Maximums einer differenzierbaren eindimensionalen Funktion , was in der Regel durch Auffinden der Nullstellen der ersten Ableitung gelingt.
Verwandt mit der Optimierung ist das Gebiet der Approximation in der Numerik. Man kann umgekehrt sagen: Ein Approximationsproblem ist das Problem, den Abstand (die Metrik) zweier Funktionen zu minimieren.
Es sei im Folgenden eine Minimierungsaufgabe angenommen. Das, was optimiert werden soll, zum Beispiel ein Abstand, nennt man Zielfunktion. Das, was variiert wird, sind die Parameter oder Variablen der Zielfunktion. Bei einer zweidimensionalen Optimierungsaufgabe (also zwei unabhängige Parameter) kann man sich die Zielfunktion räumlich vorstellen, indem die Parameter die Längen- und Tiefenachse aufspannen. Die Höhe ist dann der Zielfunktionswert. In der reinen Anschauung entsteht so (zumindest bei stetigen Funktionen) ein „Gebirge“ mit Bergen und Tälern.
Falls es sich bei der Optimierungsaufgabe tatsächlich um ein Approximationsproblem handelt, dann spricht man bei dem „Gebirge“ mitunter auch von der Fittopologie. In diesem Fall wird als Zielfunktion in den allermeisten Fällen die Fehlerquadratsumme eingesetzt, siehe Details im Artikel Methode der kleinsten Quadrate.
Da die Zielfunktion ein „Gebirge“ darstellt, ist das Optimierungsproblem damit gleichzusetzen, in diesem Gebirge das tiefste Tal (Minimierung) oder den höchsten Gipfel (Maximum) zu finden. Der Aufwand zur Lösung der Aufgabe hängt entscheidend von der Form des „Gebirges“ ab. Extrembeispiel für eine Minimierungsaufgabe wäre eine absolut flache Ebene, aus der an zufälligen Punkten einzelne nadelförmige Spitzen herausragen. In diesem Fall hilft keinerlei Suchalgorithmus, man kann nur zufällig suchen (Monte-Carlo-Methode) oder systematisch die gesamte Fläche abrastern. Einer der einfachsten Fälle einer zweidimensionalen Optimierungsaufgabe liegt vor, wenn das Gebirge die Form einer um die Höhenachse symmetrischen Parabel hat, deren Scheitelpunkt zu finden ist.